By clicking "Accept", you agree to have cookies stored on your device to improve site navigation, analyze site usage, and assist with our marketing efforts. See our privacy policy for more information.
Knowledge

Deciphering intention classification in AI: a revolution in user understanding

Written by
Daniella
Published on
2024-12-02
Reading time
This is some text inside of a div block.
min
📘 CONTENTS
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Dans un monde oĂč les interactions entre humains et machines se multiplient, la capacitĂ© des systĂšmes intelligents Ă  comprendre les intentions des utilisateurs devient essentielle. La classification d’intention joue un rĂŽle central dans cette quĂȘte. Cette discipline de l’intelligence artificielle (IA), Ă  la croisĂ©e du traitement du langage naturel et de l’apprentissage automatique, permet de dĂ©tecter et d’interprĂ©ter les intentions derriĂšre des requĂȘtes textuelles. Cet article fournira des explications dĂ©taillĂ©es sur la classification d'intention.

‍

From conversation analysis to voice commands, this technology underpins tools we use every day, such as chatbots, virtual assistants and search engines. Understanding its principles and how it works reveals not only its technical importance, but also its growing impact on digital interactions!

‍

‍

What is intention classification?

‍

Intent classification is a natural language processing (NLP) technique that aims to identify the objective or need expressed in a textual query. For example, when a user interacts with a chatbot by asking a question or formulating a request, intent classification enables the system to understand whether the user wishes to obtain information, perform an action or solve a problem.

‍

This technology is based on training machine learning models capable of categorizing intentions based on annotated data. These models learn to associate specific phrases or expressions with predefined categories of intent, such as "place an order", "check an account", or "get assistance". Intent classification relies on Natural Language Understanding (NLU), which evaluates users' utterances to determine their intent, thus facilitating efficient interaction.

‍

‍

Source: ResearchGate

‍

‍

Intent classification is essential, as it is the cornerstone of intelligent interactive systems. It makes interactions more fluid, precise and personalized, by aligning machine responses or actions with user expectations. Whether in customer services, search engines, or voice assistants, the ability to quickly and correctly understand intent dramatically improves user experience and operational efficiency!

‍

‍

How does intention classification differ from other natural language processing (NLP) tasks?

‍

Intent classification is a specific Natural Language Processing (NLP) task with a unique objective: to understand and categorize the intentions behind a textual query. Unlike other NLP tasks, which may focus on information extraction or global contextual understanding, intent classification aims to identify the explicit goal expressed by the user.

‍

Its main differences from other NLP tasks are as follows:

‍

1. Intention-focused goal

Alors que des tĂąches comme l’analyse de sentiments cherchent Ă  dĂ©terminer une Ă©motion (positif, nĂ©gatif, neutre) ou que l’extraction d’entitĂ©s vise Ă  identifier des informations prĂ©cises (noms, dates, lieux), la classification d’intention se focalise sur le pourquoi d’une requĂȘte. Par exemple, dans “RĂ©server un billet d’avion pour demain”, l’intention est “rĂ©server un billet”, un objectif clair distinct des informations contextuelles comme la date ou le type de voyage.

‍

2. Precise categorization

Unlike machine translation or text generation models, which produce complex and varied outputs, intent classification works on the principle of discrete categorization. Each query is classified into a predefined category of intent (such as "purchase", "information request", or "cancellation").

‍

‍

Source : https://www.researchgate.net/figure/An-instance-diagram-of-intent-detection_fig2_334513122
Source: ResearchGate

‍

‍

3. Predominant use in interactive systems

La classification d’intention est particuliĂšrement utile dans les environnements oĂč des rĂ©ponses ou actions spĂ©cifiques doivent ĂȘtre dĂ©clenchĂ©es en temps rĂ©el, comme les chatbots, les assistants vocaux, ou les services automatisĂ©s. Cela la diffĂ©rencie des tĂąches de NLP plus gĂ©nĂ©ralistes, comme la synthĂšse de texte ou le rĂ©sumĂ©, qui n’ont pas toujours une finalitĂ© d’action immĂ©diate.

‍

4. The need for targeted annotation

Pour entraĂźner un modĂšle de classification d’intention, des donnĂ©es annotĂ©es sont indispensables, avec des Ă©tiquettes correspondant aux intentions dĂ©finies. Cette annotation diffĂšre de celle utilisĂ©e dans d’autres tĂąches de NLP, oĂč les donnĂ©es peuvent ĂȘtre annotĂ©es pour des concepts plus larges (entitĂ©s nommĂ©es, structures syntaxiques).

‍

‍

What are the common uses of intention classification?

‍

Intent classification has become a key technology in many sectors, thanks to its ability to interpret and respond to user needs. Here are some common use cases where this technology plays a key role: examples will be provided to illustrate the different categories of search intent.

‍

Chatbots and virtual assistants

Les chatbots, qu’ils soient intĂ©grĂ©s aux sites web ou aux applications de messagerie, reposent largement sur la classification d’intention pour comprendre les demandes des utilisateurs. Par exemple, un chatbot bancaire peut identifier si l’utilisateur souhaite consulter son solde, signaler une transaction frauduleuse ou poser une question sur les taux d’intĂ©rĂȘt, ou encore demander de l'aide pour acheter quelque chose aprĂšs avoir vu une offre spĂ©cifique. La classification d’intention permet de rediriger chaque requĂȘte vers une rĂ©ponse ou un processus appropriĂ©.

‍

Intelligent search engines

When a user performs a search, search engines analyze the intention behind the query: are they looking for information, products to buy, or local services? Understanding the underlying reason why a user performs a search is key to delivering relevant results. Intent classification helps to provide more relevant results, by adapting the content displayed to the user's context.

‍

Recommendation systems

In e-commerce or content platforms, intent classification can be used to analyze user behavior and predict their needs. For example, if the intention detected is "looking for a gift", the system can recommend specific products, adapted to various occasions or budgets.

‍

En outre, des modÚles génératifs avancés comme Dolphin, LLaMA 2, Yi 34B et Mixtral 8x7B représentent des alternatives viables aux solutions populaires comme ChatGPT, GPT-3.5 et GPT-4, offrant des fonctionnalités adaptatives et personnalisables pour répondre aux besoins spécifiques des utilisateurs en matiÚre de classification des intentions.

‍

Automated call centers

Interactive Voice Response (IVR) systems use intent classification to handle incoming calls. By analyzing spoken phrases, they identify whether the call concerns technical assistance, a billing query or a termination request, and transfer the call to the appropriate agent or department. For more details on intent classification, please consult our documentation.

‍

Email management and prioritization

Companies use intent classification to analyze and sort incoming e-mails. For example, a customer service department can identify emails related to returns, complaints or inquiries, enabling faster, more organized processing.

‍

Digital health applications

Medical platforms exploit this technology to understand users' symptoms or concerns. For example, an app could distinguish whether the user is looking for a diagnosis, a consultation or information on specific treatments.

‍

Education and e-learning

In e-learning systems, intent classification is used to understand students' questions, whether asking for explanations, additional resources or an assessment of their progress. This enables greater personalization of educational content.

‍

Optimizing websites and customer paths

On a website, intent classification helps to analyze visitor behavior in order to adjust the content displayed or the actions proposed. For example, identifying whether a user is looking for information, comparing products or ready to make a purchase can greatly improve conversion rates.

‍

Website and social network analysis

Companies use this technology to analyze messages or comments on their website or social networks. It makes it possible to distinguish between intentions such as asking a question, reporting a problem, or giving a positive or negative review of a product or service.

‍

Security and fraud detection

In cybersecurity, intent classification helps to identify suspicious behavior in requests or interactions, helping to detect phishing or fraudulent access attempts.

‍

‍

Conclusion

‍

Intent classification is a perfect illustration of the ability of artificial intelligence to bring machines closer to human needs. By enabling systems to understand the"why" behind a query, it plays a fundamental role in improving human-machine interactions, whether in e-commerce, customer services or cutting-edge technologies such as virtual assistants.

‍

However, its effectiveness relies on high-quality data and well-trained models, underlining the importance of data annotation and machine learning. With ongoing advances in natural language processing, intent classification continues to push the boundaries of what's possible, paving the way for ever more intuitive and personalized digital experiences.